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Exponential infinite-product representations of the 
time-displacement operator 

S Klarsfeld and J A Oteo 
Division de Physique Theoriquet, IPN, F-91406 Orsay Cedex, France 

Received 15 March 1989 

Abstract. Fer’s infinite-product expansion is reconsidered and applied to the specific case 
of the time-displacement operator in quantum mechanics. An alternative version of this 
expansion due to Wilcox is also discussed and found to be quite different from the original 
one. In general the latter is expected to possess better convergence properties. 

1. Introduction 

Exponential representations of the unitary time-displacement operator U = U ( t ,O)  = 
exp(i2) have become increasingly popular following a much celebrated article by 
Magnus [l]. Usually R is expanded in a series, i.e. U = exp(E Q,), where i2, is of order 
n with respect to the Hamiltonian. For this reason the Magnus method is sometimes 
called exponential perturbation theory. In contrast, much less attention has been paid 
to solutions in the form of infinite products of exponential operators. These are by 
no means equivalent to the previous form, because in general the operators i2, do not 
commute with each other. 

For a quantum system with Hamiltonian H = H(t) the time-evolution operator U 
satisfies the Schrodinger equation 

= H/ih (1.1) 
2 
- U  = B u  2t 

subject to the initial condition U = I at t = 0, where I is the unit operator. When H 
does not depend on t the solution of (1.1)  is simply U = exp(fit). If fi depends on 
t explicitly then in general the convergence of the Magnus series is ensured only for 
sufficiently small values o f t .  The ansatz U = l7 exp(Q,) (where are operators to be 
determined) is an alternative to the Magnus expansion, also preserving the unitarity of 
the time-evolution operator. Such a solution was proposed by Fer [2] long ago in a 
paper devoted to the study of systems of differential equations. However, to the best 
of our knowledge, Fer’s method was never employed to solve any physical problem. 
Sometimes Fer’s paper is even misquoted as a reference for the Magnus expansion [3]. 
On the other hand Wilcox [4] associated Fer’s name with an interesting alternative 
infinite-product expansion which is indeed a continuous analogue of the Zassenhaus 
formula. This, however, is also misleading since Wilcox’s approach is in the spirit of 
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perturbation theory, whereas Fer's original one was essentially non-perturbative. All 
this clearly shows that the Fer expansion is not sufficiently well known, and prompted 
us to re-examine its usefulness in physics. 

Since Fer's paper is not readily accessible, we first outline his derivation in $2 in 
a form better adapted to the specific needs of quantum mechanics. We also briefly 
recall two special convergence conditions obtained by Fer. In $3 we discuss the Wilcox 
method and compare it with Fer's original one. This will make clear the different 
character of the two expansions. A simple procedure is then described by which the 
Wilcox approximants can be expressed in terms of Magnus operators. In $4 we apply 
these expansions to two simple problems of physical interest. 

2. The Fer method 

When the Hamiltonian fi is constant in time, or when fi commutes with its time 
integral 

the evolution operator is given exactly by L' = exp(Fl). This led Fer to seek the 
solution of ( 1 . 1 )  in the factorised form 

He also noticed that quite generally L'I will be closer to unity than U for small t .  

(2.2) into ( l . l ) ,  we have 
The problem now is to find the differential equation satisfied by Ut .  Substituting 

The derivative of the exponential operator can be expressed as [4] 

so that from (2.3) we readily arrive at the new Schrodinger equation 

where 

The above procedure can be repeated to yield a sequence of iterated Hamiltonians. 
After n steps we find 

(2.7) U = eFleFZ . . .eF" U ,  
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with U,, satisfying the equation 

- (11' C"(0) = I 2 
-U,, = H U,, 2t 

where 

and 

(2.10) - (0 )  H = A. F,, = s,' dt,fi(n--ll ( t ' )  

An alternative expression for f i ' f l )  is obtained by using the well known formula [4] 

where we have introduced the compact notation 

' - x [ [X Y] . . . I ]  {XO,Y) = Y 
{ x k 5  y f  - + k 

Substitution of (2.1 1) into (2.9) yields 

(2.11) 

(2.12) 

( n  = 1,2,3,. . .). (2.13) 

Inspection of (2.13) reveals an interesting feature of the Fer expansion. Since 
fi - 1 / A  and F,, is of the same order as starts with 
a term of order 2" (correspondingly the operator F,, contains terms of order 2"-' and 
higher). This should greatly enhance the convergence of the product in (2.7). Another 
promising possibility consists in using 'mixed' expansions. Thus one can leave Fer's 
scheme after a few steps and apply perturbation theory, or the Magnus expansion, to 
the iterated Hamiltonian fi"". 

For completeness we give now without proof two results due to Fer relating to the 
convergence of the expansion in (2.7). Let us define the following upper bounds: 

one easily sees that 

IIA'"(N I M t )  IlF,,(t)ll I K,,(r) (2.14) 

where 

K,,(t) E J dt' k,,-I(t') 
0 

and 

(2.15) 
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Here k,, K,, and C,, are positive functions. Let 5 ,  
dimension of the matrices considered. 

such that < I  < {, where 5 is the positive root of the equation e': = 1 + 25 (< z 1.256). 

2K,,d, with d standing for the 

Fer was able to show that the expansion in (2.7) converges for parameter values 

Explicit convergence bounds were obtained by Fer in two cases: 
(a) when nothing is known about the function CO in (2.15) and b is constant; then 

one has 2kotd < 5 ,  which determines a neighbourhood uhere convergence is ensured; 
(b) when the function CO(t) is known and ko is constant; this leads eventually to 

(2.16) 

In practice such conditions, however, are not of great help, and numerical conver- 
gence tests should be conducted for each specific application. 

3. The Fer-Wilcox expansion 

A more tractable form of the Fer expansion has been devised by Wilcox [4] in analogy 
with the Magnus approach. The idea is to treat l/fi in (1.1)  as an expansion parameter 
and to determine the successive factors in the product 

by assuming that W,, is exactly of order ( I / h ) " .  i.e. of order n with respect to the 
Hamiltonian. Hence, it is clear from the very beginning that the methods of Fer and 
Wilcox give rise indeed to completely different infinite-product representations of the 
time-evolution operator U .  

The explicit expressions of W l ,  WZ and W,  are given in [4]. It is noteworthy that the 
operators W,, can be expressed in terms of Magnus operators Rk, for which compact 
formulae and recursive procedures are available, see [5] and references therein. To this 
end we simply use the well known Baker-Campbell-Hausdorff formula 

to extract from the identity 

terms of the same order in 1 / h .  After a straightforward calculation one finds 

The main interest of the Wilcox formalism stems from the fact that it provides 
explicit expressions for the successive approximations to a solution represented as an 
infinite product of exponential operators. This offers a useful alternative to the Fer 
expansion whenever the computation of F,, from (2.10) is too cumbersome. We note in 
passing that to first order the three expansions yield the same result (FI = W I  = a1). 
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4. Two examples 

For the purpose of illustration we apply now the two infinite-product expansions 
discussed above to two simple physical systems frequently encountered in the literature 
for which exact solutions are available : ( 1 )  the time-dependent forced harmonic 
oscillator and ( 2 )  a particle of spin 4 in a constant magnetic field (double Stern- 
Gerlach experiment). 

In the first case, the driven harmonic oscillator, it is known that the Magnus 
expansion reduces to two terms (R = R I  + 0,) and provides the exact U operator [6]. 
The Hamiltonian for this system is 

H = ~ O U ' U  + f ( t ) ( a t  + ( I )  [a, a'] = 1 (4.1 

where f ( t )  is an unspecified function of time and at ,  a are the usual raising and 
lowering operators. In the Dirac interaction picture we obtain 

Since the commutator [ q a t ]  is a c-number, Fer's iterated Hamiltonians H'") with 
n > 1 vanish so that one has F,, = 0 for n > 2 .  The Wilcox operators W,, with n > 2 
in (3.1) vanish for the same reason. Thus, in this particular case, the second-order 
approximation in either method leads to the exact solution of the Schrodinger equation. 
The final result is 

where 

The second example is a two-level system described by the Schrodinger equation 
( 1 . 1 )  with Hamiltonian 

H = 4hwol +f ( r )ay  (4.5) 

where f ( t )  = 0 for t < 0 and f ( t )  = VO for t > 0; ho is the energy difference between 
the two levels and o,, U: are Pauli matrices. In the Dirac interaction picture we have 

HI = f(t)(a,  cos or - U, sin or). (4.6) 

The first-order Fer and Wilcox operators are given by (for brevity the I subscript 
is omitted hereafter) 

FI = WI = k r  dtlf?(t l)  

which readily yields 

(4.7) 

(4.8) FI = = -it [a, sin 5 + o, ( 1  -cos i ) ]  
5 
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where ;' = V , t / h  and 5 = cot. 
For the second-order Wilcox operator WZ one has [4] 

W2 = 1 l ' d r ,  L'' dtz [fi(t,),I?(tz)] 

which leads to 

(4.9) 

(4.10) 

To proceed further with Fer's method we must calculate the modified Hamiltonian 
8'" of (2.6). This can be done analytically by using the known property 

sin x 
e,4 = cos x + -A 

x 
2' = -detA t r A = O  (4.1 1) 

valid for 2 x 2 matrices. After straightforward algebra one eventually obtains 

where 8 = (2;!/5)sin(5/2) (notice that 8'" and therefore F2 depend on ay and oy, 
while W2 is proportional to 0:). Since i t  does not seem possible to derive an analytical 
expression for F?, the corresponding matrix elements have been computed numerically. 

The transition probability P ( t )  from an initial state with spin up to a state with 
spin down (or vice versa) is given by 

where I*) are eigenstates of the non-perturbed Hamiltonian ihwa,, with eigenvalues 
Sho/2 .  This expression has been computed on assuming: U1 2 eF1 = e W 1 ,  UI z eF1eF2 
and U ,  2 euleM' ,  and the results have been compared with the exact analytical solution 

47' sin?[(;,? + 5 ' / 4 ) l ' ? ]  P ( t )  = ___ 4:2 + 5' (4.14) 

where we recall that 5 = ~ t .  
In figures 1 and 2 we show the transition probability P as a function of ( for two 

different values of 7, while in figure 3 we have plotted P against 7 for fixed 5 .  Notice 
that the second order in the Wilcox expansion does not contribute to the transition 
probability (this is similar to what happens in perturbation theory). On the other hand, 
Fer's second-order approximation is in remarkable agreement with the exact result. 

5. Conclusions 

In this paper we have carried out a detailed comparison between Fer's original method 
and a related one subsequently developed by Wilcox. These generate two distinct repre- 
sentations of the time-displacement operator U as an infinite product of exponentials. 
Fer's expansion appears to converge faster, but requires much more computational 
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Figure 1. Transition probability in the two-level system as a function of 5 .  for 7 = 1.2. 
comparing the exact result of (4.1 2 )  (full curve); Fer’s second-order result (broken curve); 
Wilcox’s second-order result (chain curve). 
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Figure 2. Transition probability in the two-level system as a function of 5 for j~ = 2. Lines 
are coded as in figure 1.  

effort at each stage. This is clearly seen in the example of the two-level system for 
which the second-order Fer approximation works already quite well. In the Wilcox 
approach the even orders do not contribute to the transition probability in this case. 
On the other hand, for the forced harmonic oscillator, where the second order of the 
Magnus expansion is known to yield the exact solution, both the methods of Fer and 
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Figure 3. Transition probability in the two-level system as a function of ;’ for f = 1. Lines 
are  coded as  in figure I .  

Wilcox perform the same. 
Rather than being competitive, the Fer. Wilcox and Magnus expansions can be 

considered as complementary. The degree of performance of each depends on the 
nature of the particular physical problem under consideration. 
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